Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum
نویسندگان
چکیده
Graphene-based electrodes are very promising for molecular electronics and spintronics. Here we report a systematic characterization of the electroburning (EB) process, leading to the formation of nanometer-spaced gaps, on different types of few-layer graphene (namely mechanically exfoliated graphene on SiO2, graphene epitaxially grown on the C-face of SiC and turbostratic graphene discs deposited on SiO2) under air and vacuum conditions. The EB process is found to depend on both the graphene type and on the ambient conditions. For the mechanically exfoliated graphene, performing EB under vacuum leads to a higher yield of nanometer-gap formation than working in air. Conversely, for graphene on SiC the EB process is not successful under vacuum. Finally, the EB is possible with turbostratic graphene discs only after the creation of a constriction in the sample using lithographic patterning.
منابع مشابه
Characterization of Nanometer-Spaced Few-Layer Graphene Electrodes
We study graphene electrodes that can be used for contacting single molecules. The nanometer-scale gap is made by feedback controlled electroburning in few-layer graphene sheets. We analyze the time stability, and the influence of the temperature and gate voltage on the current flowing through the empty gaps. The electrodes are stable at room temperature for long periods of time. We show statis...
متن کاملMultiscale investigation of graphene layers on 6H-SiC(000-1)
In this article, a multiscale investigation of few graphene layers grown on 6H-SiC(000-1) under ultrahigh vacuum (UHV) conditions is presented. At 100-μm scale, the authors show that the UHV growth yields few layer graphene (FLG) with an average thickness given by Auger spectroscopy between 1 and 2 graphene planes. At the same scale, electron diffraction reveals a significant rotational disorde...
متن کاملHigh-yield fabrication of nm-size gaps in monolayer CVD graphene.
Herein we demonstrate the controlled and reproducible fabrication of sub-5 nm wide gaps in single-layer graphene electrodes. The process is implemented for graphene grown via chemical vapor deposition using an electroburning process at room temperature and in vacuum. A yield of over 95% for the gap formation is obtained. This approach allows producing single-layer graphene electrodes for molecu...
متن کاملHigh-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exf...
متن کاملEpitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.
Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying th...
متن کامل